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A function f on [-1, 1] is said to be totally positive if all its Lagrange inter­
polants are positive on [-1, 1]. It is said to be totally bounded if there is a
uniform bound on all its Lagrange interpolants on [-I, 1]. These classes of
functions are studied here. © 1988 Academic Press. Inc.

INTRODUCTION

This paper continues our project on inverse interpolation begun in
[HRI ]-our general task being to deduce some property of a function f
from some property or properties of its set ff'( f) of Lagrange interpolants.
In this paper our two properties are:

(1) Uniform boundedness in the sup norm on [-1, 1].

(2) Positivity on [-1,1].

The first condition will be shown to imply that f is analytic in a certain
region E containing [-1, 1], while the second implies infinite differen­
tiability on [ -1, 1]. Before we give more precise definitions, we need some
preliminaries.
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If I is a real-valued function on a set S, we say that a polynomial p of
degree n is a Lagrange interpolant of I if there are n + 1 distinct numbers
{Xo' Xl' ... , Xn} s:;:; S such that p(xj ) = I(x) for j = 0, 1, ..., n. (Of course there
may be other points of agreement as well.) We find it most convenient to
use the Newton form for the interpolating polynomial:

p(X)=!(Xo)+ ![x\, xo](x-xo)

+ ... +/[xn,·..,XI>Xo](x-xo)·"(X-Xn_I)·

We use the notation p(x) = L(f; Xo, ..., x n ), where I[xj , ... , xo] is defined
inductively by

(This is just the well-known jth-order divided-difference of f) We also
make use of the error formula (see [IK])

E(x) =!(x) - p(x) = (x - XO)· .. (x - x n ) I[x, Xn , ... , xol

The set of all Lagrange interpolants of I is denoted by 5t'(f).

DEFINITION 1. A real-valued function I defined on S is said to be
totally bounded on S if there exists an M such that Ip(x)1 ~ M for all
PE5t'(f) and all XES. We write

11/11TBs= sup Ip(x)1
xeS

pE 2'(/)

(1)

and denote the class of all such functions by TBS.

Most of this paper will focus on TBI, 1= [ -1, 1], and in that case
11·IiTBi gives a norm and TBI is a normed linear space. We shall see soon
that TBI is in fact a Banach space.

DEFINITION 2. A real-valued function I defined on S is said to be
totally positive if p(x) > 0 VXES and Vp E 5t'(f). We denote the class of
such functions by TPS.

Again, our main focus will be on TPI. At this point it is natural to ask:
Are there any non-polynomials in TPI? In fact, are there any non-linear
functions in TPI?

The answer is yes, and we now indicate why. It is easily seen that TBI 2

{polynomials}, and since TBI is a Banach space, there must be non­
polynomials f in TBI (this can also be shown directly)-this follows from



206 HORWITZ AND RUBEL

the Baire Category Theorem. But then f(x) + ME TPI for sufficiently
large M.

For the unbounded interval [0, r:fJ), however, it turns out that TP[O, (0)
consists of linear functions only!

Remarks. (1) If some of the points of interpolation coalesce, we get
Hermite interpolation. In particular, if X o= ... = X n we get the nth-order
Taylor interpolant at X o:

By taking limits, if f E TBI, then ISn(x; xo)1 ~ II f II TBI for any x, X oE I, n? 0.

(2) To be consistent we have defined TPS for interpolation at distinct
points-if we allow coalescing nodes then the interpolant could vanish
on s.

1. TOTALLY BOUNDED FUNCTIONS ON I

THEOREM 1. The norm defined above makes TBI a Banach space.

Proof Suppose {fn} is a Cauchy sequence in TBI. Then clearly {fn} is
Cauchy in the uniform norm on [-1, 1] Uust consider constant inter­
polants), and hence there exists f E C[ - 1, 1] such that fn --+ f uniformly
on [ - 1, 1]. First we claim that

fETBI. (2)

To prove (2), let L be any Lagrange interpolation operator. Since a
Cauchy sequence in a normed space is bounded, 3M (independent of n, L,
and x) such that IL(fn(x))1 ~ M. Then

L(f)(x) = L(f - fn)(x) + L(fn(x))

=> IL(f )(x)1 ~ IL(f - fn)(x)1 + M.

But for any fixed L and x, L(fn)(x) --+ L(f)(x) and hence we can force
IL(f)(x)1 ~ 1+M, say, for any L, XE [-1,1]. This proves (2). Now we
claim

in the TBI norm.

Now for any x E [ -1, 1], and any L,

IL(f - fn)(x)1 ~ IL(f - fm)(x)1 + IL(fm - fn)(x)l.

(3)
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For s > 0 given, we can choose N 1 (depending on x, L) such that
IL(f - fm)(x)1 < s/2, "1m ~ N l • Also, we can choose N 2 (independent of x,
L) such that /L(fm-fn)(x)l<s/2, "1m, n~N2' since {fn} is Cauchy in
TBI. Then for n ~ N 2 , IL(f - fn)(x)1 < s.

Remark. In proving Theorem 1 we only need that II f II 00(1) ~ II f II TBl'

and that if fn ---+ f uniformly on I, L(fn) ---+ L(f) pointwise on I, for any
Lagrange interpolation operator L.

THEOREM 2. Let f be defined on [ -1, 1J and suppose that there exists a
real number r such that p(x)~r, VXE[-I, IJ and VPE!l'(f). Then
fEcx'[-I,I].

Proof First we have

f is bounded on [ - 1, 1]. (4 )

To prove (4), suppose (taking subsequences if necessary) that
f(x U») ---+ +00 with xU) ---+ c E [ - 1, 1]. Consider Pix) = f(xo)+
(x-xo)f[xU), xoJ, the linear interpolant to f at {xo, xU)}. If c# -1,
choose X o such that -1 < Xo < c. Then pi -1) ---+ -00, a contradiction. (If
c= -1, choose X o such that -1 <xo < 1. Then pi1) ---+ -00.) Note that
f(x U ») cannot tend to - 00, since the same would be true for the constant
interpolants. Now we make the following inductive hypothesis:

for all choices of points

Suppose If [x&il, ---, x~~ 1JI ---+ +00 for some sequence
xU) = (x&il, ..., x~Jll) E r + 2, with all coordinates distinct. Again
subsequences if necessary, assume {x IJ )} ---+ X = (xo, ..., xn + l).

Now choose some point X n + 2E ( -1, 1)\ {xo, ... , X n + l}. Consider

(5)

{XU}},
taking

Pi(X) == L(f; x&J), , x~Jll' X n+ 2)

=f(x&J») + + (x - x&J») ... (x - x~J») f [x&J), ..., x~J), X n+ 2J
+ (x - xU») ... (x - xU»)(x - x ) f [xU) xU) x xU) Jo n n + 2 0 , .." n' n + 2, n + 1 .

(Note that

f [xU) xU) J- f [xU) x J
r [ U) U) J= 0' ... , n 1 , ... , n + 2
. X o ' ... , X n ,Xn + 2 - U) ,

X o -Xn + 2
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which is defined for large j since x&i) stays away from Xn+ 2, remains
bounded by (5).) Now

I [x(j) x(j) x (j) ]
0'"'' n' n+2'Xn + 1

for some subsequence since I[x\i), ... , Xn+ 2] remains bounded. Then we just
choose aE[-I,l] so that (a-x&i))···(a-x~j))(a-xn+2) has the

. . f I [(j) (j) ] Th () h' h .opposIte sIgn rom Xo , ...,xn+ I 'xn+2 . en Pia ---. -00, w IC IS a
contradiction.

Hence we have that II [xo, ... , x n+ I] I~ M n+ 1 for all points xi such that
- 1~ Xo< ... < Xn+ 1 ~ 1. So by induction (using (4) to get started), for
each positive integer n, I/[xo, ...,xn]1 ~Mn" Then for sufficiently large c
(depending on n), g(x) = I(x) + cex satisfies

for all xi such that -1 ~xo< ... <xn~ 1. (6)

Now we should also note that

IEC[ -1,1] (and thus g E C[ -1, 1] also). (7)

Indeed, I/[x,Y]1 ~M, for all x#y in [-1,1], and (7) follows
immediately. Then by [BW], the derivative g(n -- 2) exists in (-1, 1), for
n>2.

Now take n = 4. By choosing c large enough, we can certainly force
g"(X»O on (-1,1) (g[xO,X I ,X2];::!' say). Now the function h(x)=
g[x, -1] is bounded and monotonic (since gil> 0 on (-1, 1)) and hence
lim x ~ -I + h(x) exists, so that g'( -1) exists, since g E C[ - 1, 1]. Similarly,
g'(1) exists. But we also get that g'(x) =g[x, x] is bounded and monotonic
on ( -1, 1), and hence lim. ~ _p g'(x) and lim. ~ 1- g'(x) must exist. Then
g' must be in C[ -1, 1], and hence f' exists on [ -1, 1].

Now we just proceed inductively. For n = 5 (choosing c larger, perhaps,
as we go along) we can force g'" (x) > 0 on (-1, 1). Then g'[x, -1] is
bounded and monotonic (just use the Mean Value Theorem) and hence
gil ( _ 1) (and similarly gil (1 )) exists with gil E C[ - 1, 1]. Proceeding, we see
that I(n) exists on [ -1, 1] for any given positive integer n.

Remark. It can be shown that there exists a function lEe'" [ - 1, 1]
such that neither I nor -I satisfies the hypothesis of Theorem 2. This
follows from [HR 1], where an I E Coo [ - 1, 1] is constructed so that
ff'(ff'(f)) = {all polynomials}.

Question. Must the I in Theorem 2 be analytic on [ -1, I]?
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COROLLARY 1. If f E TBI, then f E COO [ - I, I].

Proof Follows immediately from Theorem 2. There is also a proof of
Corollary I that is simpler than that of Theorem 2.

Now that we know that TBI s; Coo [ - I, I], we can use the partial sums
of the Taylor series to get that f is actually analytic on [ -I, 1]. (Note that
our bound on interpolants with distinct nodes extends easily when the
nodes coalesce.)

LEMMA 1. For any f E TBI,

\
f(nl(x)l:s;:: 211f11TBI.

n! (l + IxW

Proof Consider for any x E I the Taylor interpolant

f(n)(c)
sn(x;c)=f(c)+f'(c)(x-c)+ ... +--,- (x-ct·

n.

Then

so that

If(n)(c)1 Ix- In«211fll ~ If(nl(c)1 «211f11TBI
n! c "" TBI n! "" (l + leW'

THEOREM 3. Let E = union of the two discs in the complex plane
E 1 ={z:lz-II<2} and E 2 ={z:lz+II<2}. Then if fETBI, f must
extend to be analytic in E.

Proof For any CE [-I, I],

1 fXf(x)-sn(x;c)=, f(n+ll(t)(x-ttdt
n. c

(the Integral Form for the Remainder), and thus

1 fX J(x-ttl
If(x)-sn(x;c)I:S;::,21IfIITBI(n+I)! (1 II)n dt

n. c + t

(x-t)n+llx (t-xt+1jX
:s;::k(n+ I) 1 or k(n+ I) ---

n+ c n+ I ,

(by Lemma 1) and thus If(x) - sn(x; c)1 :s;:: k I(x - c)ln + I. Hence for x close
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to c, the Taylor series converges to I(x), which implies that I is analytic on
[ -1, 1]. For each c, the radius of convergence rc of the power series
expansion about c is :;::, 1+ lei, again by Lemma 1. Thus I is analytic in
U {Nc : CE [-1, I]}, where N c = {z: Iz-ci < 1 + lei}. But it is easily seen
that UN c = E, and this completes the proof.

Remark. While we have defined TBS for real-valued functions, if I is
complex-valued then the corresponding definition is obvious (or one can
say then that IE TBS ¢> Re I and 1m I are in TBS).

LEMMA 2. For any w on iJE or outside E, I(z)= 1/(w-z)ETBI.

Proof Let p be any interpolant to I at {xo, ..., x n } S [ -1, 1]. Then

(This follows easily since p(x)( W - x) interpolates 1 at {xo, ..., x n }, etc.) But
for any j we must have Ix - x) ~ Iw - x) since E contains every disc in C
centered at x j with radius Ix - x), XE [ - I, 1].

Remark. It is of considerable interest to determine the precise boundary
behavior in E of functions IE TBI. For example, using Cauchy's formula, it
can be shown that H1(E) S TBI, where

H1(E) = {Hardy Space of HI functions on E}

= {I analytic in E: lim f I/(X)ldIX1}
r~aE r

exists for any collection of uniformly smooth contours r tending to iJE.
However, Lemma 2 shows that H1(E) -=f- TBI since 1/(3 - z) ¢ HI (E).

2. SPACE OF TOTALLY DERIVATIVE BOUNDED FUNCTIONS

We now define a Banach space B as follows:

IE B¢> 3M such that Ilpulll co, [-I. I] ~ M

for any p E feU) and any non-negative integer j. For IE B,

1I/11B= sup IlpU)llco,[_I,I]'
PE.:fU)
j~ 0,1, ...



TOTALLY POSITIVE AND BOUNDED FUNCTIONS 211

It is trivial that this defines a norm, and it also follows that B is complete
under this norm. We sketch the proof of that fact now. Note that since
f E TBI, f is certainly EC

oo
[ -1, 1].

By taking nth derivatives of Taylor interpolants of f, it is easily seen that

and

f (·)II } 1100, [-I, I] ~ M independent of j (8)

sup 1If(j)lloc, [-I, I] ~ IlfiIB'
J

So if {fn} is Cauchy in B, 3fEC OC [-1, 1] such that f~J)-+f(j)

uniformly for any j (we really do not need such convergence, though).
Then we just proceed as earlier, using the fact that DJLUn)(x)-+
DJLU)(x) for any L E .!flU) and any j.

Now it also follows from (8) that

Every f in B is an entire function.

We can also show

(9)

THEOREM 4. B is not an algebra.

Proof First, for f(x) = eCx
, lei ~ 1, fEB. This follows smce for any

p E .!flU), p(j) E .!flU (j)) and hence

2(n- J+I)

:<elci Icln+ 1

"" (n-j+1)! '

which clearly remains bounded, independently of nand j.
If e> 1, however, then eCX clearly does not satisfy (8) and hence is not

in B.

Question 1. Is B a familiar space of entire functions? In particular, is
B = {entire functions of type ~ I}, with the B norm equivalent to
sUPJ II f (j) II oc,l ?

Question 2. We can define a similar space A by the requirement
II pll 00,1 ~ M, where p is any Lagrange interpolant to any derivative of f By
the Mean Value Theorem, As; B. Is A = B (setwise), with the norms
equivalent? (The norm on A is obvious,)

640:52:2-7
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3. TOTALLY POSITIVE FUNCTIONS ON I AND RELATED TOPICS

Our first result follows directly from Theorem 2.

THEOREM 5. If f E TPI, then f E COO [ - 1, 1].

THEOREM 6. f(x) = 1/(b-x)ETPI<o>b~3.

Proof Clearly we must have b> 1. As noted earlier,

(X-XO)"'(X-Xn)
E(x) = f(x) - p(x) = (b _ x

o
) ... (b - xnHb - x)'

where p = L(f; X o, ..., x n ). Also p is positive on [ -1, 1],

(x - x o) ... (x - x )
<o>E(x) <f(x) on [ -1, 1] <0> (b _ x

o
) .. , (b _ x:) < 1 on [ - 1, 1].

But if 1 <b<3 and n is odd then choose xo= ... =Xn= 1 and X= -1 =>

E( - 1) > f( - 1), and a small perturbation gives an interpolant at distinct
points which is negative at -1.

If b> 3 the result is trivial. If b = 3, then when Xo, ..., Xn are distinct
(x - x o) ., . (x - x n) < (b - xo) ... (b - x n).

It was noted in the Introduction that if f E TBI, then f + ME TPI for
large enough M. It is unclear, however, what the exact connection is. It is
plausible that the answer to the following question is yes.

Question. Is TPI s TBI?

We can prove a result like this if we assume that all the derivatives are
totally positive. We find it convenient for now to work on [0, 1] = 1.

THEOREM 7. Suppose f E Coo [0, 1] and f U)E TPJ for all j. Then
f U) E TBJ, V).

Proof Clearly we must have f U)> 0 on J, V). Now if p E !E(fU»), then

E(1) =fU)(1) - p(1) = (1- x o) .. · (1- xn) f(n+ J+I)(O/(n + I)!

~ 0 => p(1) ~f(j)(1)·

Also p(O) ~ O. Since p is monotone on [0, 1] (because p' > 0 since
p' E !E(fu+ I»), we must have Ilplloo = p(1) ~fU)(1) for all interpolants p
to f U ). Hence f U ) E TBJ.

Remark. There are functions f such that f U) E TPJ, V}. For example, if
g belongs to the space A mentioned earlier (uniform bound on interpolants
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to any derivative, modified for [0, 1]), then g + Me X will work for large M,
since it can easily be shown that eX (and hence all its derivatives) is in TPJ,
with a positive lower bound on all the interpolants to eX. However, if
f U ) E TBJ Vj, we cannot just take f + MeX to get f U ) E TPJ Vj.

Interpolants on Unbounded Intervals

THEOREM 8. Suppose f is totally positive on [0, etJ). Then f(x) = ax + b
for some constants a and b.

First, we state the following lemma, whose simple proof we leave to the
reader.

LEMMA 3. Suppose all linear interpolants to f are positive on [0, 00),

where the nodes are also from [0, 00). Then f(x)/x must be decreasing
on (0, 00).

Proof of Theorem 8. By Lemma 3, f(x) = O(x) as x -> 00. Now suppose
f is not linear, and choose points {xo, XI' X2} £; [0, etJ) such that
f[xo, x I' x 2] ,6 0. Let p(x) = L(f; x o, X I> x 2), so that p has degree = 2 since
its leading coefficient is f [xo, X I' x 2]. Let

E(x) = f(x) - p(x) = (x - xo)(x - xd(x - x 2) f [x, Xo, Xl' X2].

Now since all third-degree interpolants to f are positive on [0, 00), we
must have f[x 3,xO,X1 ,X2]?0 for all points 0~XO<Xl<X2<X3<r:IJ.

Hence E(x)?O for all X?X 2. But f(x)-p(x)-> -00 as X->00 since
f(x) = O(x) and p has degree = 2. This contradiction implies that f must
be linear.

Remarks. (i) In proving Theorem 8 we really only used the fact that
all the interpolants of degree 1, 2, and 3 are positive on [0, etJ ).

(ii) A necessary condition for f to belong to TPl is that f(x)/x be
decreasing on (0, 1). Hence f(x) = (x + e)2 ¢: TPl for small e > 0. But
f(x) = x + e is in TP1. Hence TPl is not an algebra!

We now prove a result similar to Theorem 8 for interpolants on the real
line R, where we assume the degree is even, of course.

THEOREM 9. Suppose that all interpolants of even degree to f with nodes
in R are positive on R. Then f(x) = ax2+ bx + c for some a, b, c.

Proof It suffices to assume that f is even on R. (If f E TPR, then

g(x) =f(x) +[( -x) E TPR.
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We will have that g(x) is quadratic. Let h(x) = (f(x) - f( -x))/2 be the
odd part of f Since f""(x) >0 for all xEIR, we have h""(x) >0 for all
x E IR, and thus h is at worst a cubic. But h cannot contain an x 3 term since
then f would, yet f is non-negative on IR. Hence f must also be quadratic.)

First we claim

as x --. 00. (10)

To prove (10), consider p(x) = L(f: -x l> x I, x 2) with 0 < XI < X2 so that

p(x) = f( -xd + f[ -XI' xI](x + xd + f[ -Xl' XI' X2](X 2-xi)

= f(x l ) + f[ -Xl> Xl' X2](X2- xI),

since f is even. Then

p(O) = f(x l ) -xU[ -XI, XI' x 2] >0

(again f even ~ f[ -XI' XI' X2] = f[x 2, XI]/(X l + x 2))

and hence f(x I )/xt >f(X2)/X~ so that f(x )/x2 is decreasing on (0, 00), and
(10) follows immediately.

It is clear that all the even-order divided differences of f must be non­
negative and hence f E CCO(R) by [BW] as earlier. (To apply the result in
[BWJ, f must be continuous, but convex functions on R are continuous
on R.)

Since f is even, f(n)(x) is >0 for x>°and ~O for X~ 0, whenever n is
odd, and in particular when n = 3. Now assume f is not quadratic. Then we
can choose points {xo, XI, X2, x 3} in (0, 00) such that f [xo, ... , x 3] '" 0. Let
p(x)=LCf;xo, ...,x3)~degp=3~E(x)=f(x)-p(x)--. -00 as x--.oo
by (10). But E(x)=(x-xo)···(x-x3)f(4)(O/4!, where (>0, so that
E(x) >°for X large-a contradiction.

Remark. It can be seen that we only used the positivity of the quadratic
and fourth-degree interpolants. (We need the latter to force P4) > 0 so that
~f(3) is increasing on [0,00), etc.) What if we just consider interpolants
of degree 2?

It is true that there are non-quadratics f such that every second-order
Taylor interpolant is positive on R (by looking at the discriminant
of f(xo) + f'(xo)(x - xo) + f"(xo)(x - xof/2, we get the condition
(f')2 < 2ff" on R). Thus f(x) = eX is such a function. However, it follows
easily that not every quadratic interpolant to eX is positive on R, since eX
dominates all quadratics at + 00.
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4. OPEN QUESTIONS AND FUTURE RESEARCH

215

In addition to some of the questions already listed in this paper, there
are many others that come to mind. We list just a few. A space closely
related to TBI is TCI, the space of totally convergent functions on 1.
f E TCI if any sequence {Pn} ~ fEU) of polynomials of increasing degree
converges to f uniformly on I. It can be shown that

TCI is a closed subspace of TBI, (11 )

TCI = {closure of the polynomials in the TBI norm}. (12)

(For related work on TBD and TCD, D the unit disc, see [HR2]. The
flavor of that paper is generally different, however.)

Problem 1. Is TCI ~ Co and TBI ~ tN, where ~ denotes isometric
isomorphism?

Problem 2. Is (TCI)** = TBI?

Problem 3. We have seen that

for c E 1.

Is this condition sufficient?

Problem 4. Is the above condition sufficient for the partial sums of the
Taylor series to be uniformly bounded (called Taylor bounded)? (Using the
Integral Form of the Remainder, this does not seem easy and perhaps
involves the solution of some extremal problem.)

Closely related to Problem 4 is:

Problem 5. Does Taylor bounded => totally bounded?

Problem 6. Does Taylor positive => totally positive?

Problem 7. Is TBI non-separable? (See [HR2] for a related result, if I
is replaced by D, the unit disc.)

A whole class of problems arises as follows:

Project 1. Analyze the questions in this paper for other norms-such as
U[ -1,1], BMO[ -1,1], etc.

Project 2. Choose the interpolating points from one set S 1 and the sup
norm on another set S2, and then proceed.
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Problem 8. Analyze all of the above where the interpolating points are
equi-spaced on [ -I, 1]. What does the corresponding Banach space look
like?

Other Notions

Problem 9. What properties of 2(1) imply that f is continuous? (It is
true that fEe[ -1, l]¢>some sequence from 2(f) converges uniformly
to f on I. But this doesn't really involve just the intrinsic properties of
2(1) itself, without any reference to f)

Problem 10. Suppose every interpolant to f has all its zeroes in lor all
real zeroes. What can be said about f? (For related notions on domains in
the plane, see [RR3].)

Problem 11. What are the extreme points of the cone of totally non­
negative functions on [ -1, I]?
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