JOURNAL OF APPROXIMATION THEORY 52, 204-216 (1988)

Totally Positive Functions and Totally Bounded Functions on [-1, 1]

Alan L. Horwitz

Department of Mathematics, Pennsylvania State University, Delaware County Campus, 25 Yearsly Mill Road, Media, Pennsylvania 19063, U.S.A.

AND

LEE A. RUBEL*

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801, U.S.A.

Communicated by E. W. Cheney

Received August 2, 1985

A function f on [-1, 1] is said to be totally positive if all its Lagrange interpolants are positive on [-1, 1]. It is said to be totally bounded if there is a uniform bound on all its Lagrange interpolants on [-1, 1]. These classes of functions are studied here. (© 1988 Academic Press, Inc.

INTRODUCTION

This paper continues our project on inverse interpolation begun in [HR1]—our general task being to deduce some property of a function f from some property or properties of its set $\mathcal{L}(f)$ of Lagrange interpolants. In this paper our two properties are:

- (1) Uniform boundedness in the sup norm on [-1, 1].
- (2) Positivity on [-1, 1].

The first condition will be shown to imply that f is analytic in a certain region E containing [-1, 1], while the second implies infinite differentiability on [-1, 1]. Before we give more precise definitions, we need some preliminaries.

^{*} The research of the second author was partially supported by a grant from the National Science Foundation.

If f is a real-valued function on a set S, we say that a polynomial p of degree n is a Lagrange interpolant of f if there are n + 1 distinct numbers $\{x_0, x_1, ..., x_n\} \subseteq S$ such that $p(x_j) = f(x_j)$ for j = 0, 1, ..., n. (Of course there may be other points of agreement as well.) We find it most convenient to use the Newton form for the interpolating polynomial:

$$p(x) = f(x_0) + f[x_1, x_0](x - x_0)$$

+ \dots + f[x_n, \dots, x_1, x_0](x - x_0) \dots (x - x_{n-1}).

We use the notation $p(x) = L(f; x_0, ..., x_n)$, where $f[x_j, ..., x_0]$ is defined inductively by

$$f[x_j, ..., x_0] \equiv \frac{f[x_j, ..., x_1] - f[x_{j-1}, ..., x_0]}{x_j - x_0}.$$

(This is just the well-known *j*th-order divided-difference of f.) We also make use of the error formula (see [IK])

$$E(x) \equiv f(x) - p(x) = (x - x_0) \cdots (x - x_n) f[x, x_n, ..., x_0].$$

The set of all Lagrange interpolants of f is denoted by $\mathcal{L}(f)$.

DEFINITION 1. A real-valued function f defined on S is said to be totally bounded on S if there exists an M such that $|p(x)| \leq M$ for all $p \in \mathcal{L}(f)$ and all $x \in S$. We write

$$\|f\|_{\mathrm{TBS}} = \sup_{\substack{x \in S \\ p \in \mathscr{L}(f)}} |p(x)| \tag{1}$$

and denote the class of all such functions by TBS.

Most of this paper will focus on TBI, I = [-1, 1], and in that case $\|\cdot\|_{\text{TBI}}$ gives a norm and TBI is a normed linear space. We shall see soon that TBI is in fact a Banach space.

DEFINITION 2. A real-valued function f defined on S is said to be totally positive if $p(x) > 0 \quad \forall x \in S$ and $\forall p \in \mathcal{L}(f)$. We denote the class of such functions by TPS.

Again, our main focus will be on TPI. At this point it is natural to ask: Are there any non-polynomials in TPI? In fact, are there any non-linear functions in TPI?

The answer is yes, and we now indicate why. It is easily seen that $TBI \supseteq \{polynomials\}$, and since TBI is a Banach space, there must be non-polynomials f in TBI (this can also be shown directly)—this follows from

the Baire Category Theorem. But then $f(x) + M \in TPI$ for sufficiently large M.

For the unbounded interval $[0, \infty)$, however, it turns out that TP $[0, \infty)$ consists of *linear functions only*!

Remarks. (1) If some of the points of interpolation coalesce, we get Hermite interpolation. In particular, if $x_0 = \cdots = x_n$ we get the *n*th-order Taylor interpolant at x_0 :

$$s_n(x;x_0) \equiv f(x_0) + f'(x_0)(x-x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n.$$

By taking limits, if $f \in \text{TBI}$, then $|s_n(x; x_0)| \leq ||f||_{\text{TBI}}$ for any $x, x_0 \in I, n \ge 0$.

(2) To be consistent we have defined TPS for interpolation at *distinct points*—if we allow coalescing nodes then the interpolant could vanish on S.

1. TOTALLY BOUNDED FUNCTIONS ON I

THEOREM 1. The norm defined above makes TBI a Banach space.

Proof. Suppose $\{f_n\}$ is a Cauchy sequence in TBI. Then clearly $\{f_n\}$ is Cauchy in the uniform norm on [-1, 1] (just consider constant interpolants), and hence there exists $f \in C[-1, 1]$ such that $f_n \to f$ uniformly on [-1, 1]. First we claim that

$$f \in \text{TBI.}$$
 (2)

To prove (2), let L be any Lagrange interpolation operator. Since a Cauchy sequence in a normed space is bounded, $\exists M$ (independent of n, L, and x) such that $|L(f_n(x))| \leq M$. Then

$$L(f)(x) = L(f - f_n)(x) + L(f_n(x))$$
$$\Rightarrow |L(f)(x)| \le |L(f - f_n)(x)| + M.$$

But for any fixed L and x, $L(f_n)(x) \to L(f)(x)$ and hence we can force $|L(f)(x)| \le 1 + M$, say, for any L, $x \in [-1, 1]$. This proves (2). Now we claim

$$f_n \to f$$
 in the TBI norm. (3)

Now for any $x \in [-1, 1]$, and any L,

$$|L(f - f_n)(x)| \leq |L(f - f_m)(x)| + |L(f_m - f_n)(x)|.$$

206

For $\varepsilon > 0$ given, we can choose N_1 (depending on x, L) such that $|L(f-f_m)(x)| < \varepsilon/2$, $\forall m \ge N_1$. Also, we can choose N_2 (independent of x, L) such that $|L(f_m - f_n)(x)| < \varepsilon/2$, $\forall m, n \ge N_2$, since $\{f_n\}$ is Cauchy in TBI. Then for $n \ge N_2$, $|L(f - f_n)(x)| < \varepsilon$.

Remark. In proving Theorem 1 we only need that $||f||_{\infty(I)} \leq ||f||_{\text{TBI}}$, and that if $f_n \to f$ uniformly on *I*, $L(f_n) \to L(f)$ pointwise on *I*, for any Lagrange interpolation operator *L*.

THEOREM 2. Let f be defined on [-1, 1] and suppose that there exists a real number r such that $p(x) \ge r$, $\forall x \in [-1, 1]$ and $\forall p \in \mathcal{L}(f)$. Then $f \in C^{\infty}[-1, 1]$.

Proof. First we have

$$f \text{ is bounded on } [-1, 1].$$
 (4)

To prove (4), suppose (taking subsequences if necessary) that $f(x^{(j)}) \to +\infty$ with $x^{(j)} \to c \in [-1, 1]$. Consider $P_j(x) = f(x_0) + (x - x_0) f[x^{(j)}, x_0]$, the linear interpolant to f at $\{x_0, x^{(j)}\}$. If $c \neq -1$, choose x_0 such that $-1 < x_0 < c$. Then $p_j(-1) \to -\infty$, a contradiction. (If c = -1, choose x_0 such that $-1 < x_0 < 1$. Then $p_j(1) \to -\infty$.) Note that $f(x^{(j)})$ cannot tend to $-\infty$, since the same would be true for the constant interpolants. Now we make the following *inductive* hypothesis:

$$|f[x_0, ..., x_n]| \leq M_n \quad \text{for all choices of points}$$

$$-1 \leq x_0 < x_1 < \dots < x_n \leq 1. \tag{5}$$

Suppose $|f[x_0^{(j)}, ..., x_{n+1}^{(j)}]| \to +\infty$ for some sequence $\{x^{(j)}\}, x^{(j)} = (x_0^{(j)}, ..., x_{n+1}^{(j)}) \in I^{n+2}$, with all coordinates distinct. Again taking subsequences if necessary, assume $\{x^{(j)}\} \to x = (x_0, ..., x_{n+1})$.

Now choose some point $x_{n+2} \in (-1, 1) \setminus \{x_0, ..., x_{n+1}\}$. Consider

$$p_{j}(x) \equiv L(f; x_{0}^{(j)}, ..., x_{n+1}^{(j)}, x_{n+2})$$

= $f(x_{0}^{(j)}) + \dots + (x - x_{0}^{(j)}) \dots (x - x_{n}^{(j)}) f[x_{0}^{(j)}, ..., x_{n}^{(j)}, x_{n+2}]$
+ $(x - x_{0}^{(j)}) \dots (x - x_{n}^{(j)})(x - x_{n+2}) f[x_{0}^{(j)}, ..., x_{n}^{(j)}, x_{n+2}, x_{n+1}^{(j)}].$

(Note that

$$f[x_0^{(j)}, ..., x_n^{(j)}, x_{n+2}] = \frac{f[x_0^{(j)}, ..., x_n^{(j)}] - f[x_1^{(j)}, ..., x_{n+2}]}{x_0^{(j)} - x_{n+2}},$$

which is defined for large j since $x_0^{(j)}$ stays away from x_{n+2} , remains bounded by (5).) Now

$$f[x_0^{(j)}, ..., x_n^{(j)}, x_{n+2}, x_{n+1}^{(j)}]$$

= $f[x_0^{(j)}, ..., x_n^{(j)}, x_{n+1}^{(j)}, x_{n+2}]$
= $\frac{f[x_0^{(j)}, ..., x_{n+1}^{(j)}] - f[x_1^{(j)}, ..., x_{n+2}]}{x_0^{(j)} - x_{n+2}} \to +\infty \text{ or } -\infty$

for some subsequence since $f[x_1^{(j)}, ..., x_{n+2}]$ remains bounded. Then we just choose $a \in [-1, 1]$ so that $(a - x_0^{(j)}) \cdots (a - x_n^{(j)})(a - x_{n+2})$ has the opposite sign from $f[x_0^{(j)}, ..., x_{n+1}^{(j)}, x_{n+2}]$. Then $p_j(a) \to -\infty$, which is a contradiction.

Hence we have that $|f[x_0, ..., x_{n+1}]| \le M_{n+1}$ for all points x_j such that $-1 \le x_0 < \cdots < x_{n+1} \le 1$. So by *induction* (using (4) to get started), for each positive integer n, $|f[x_0, ..., x_n]| \le M_n$. Then for sufficiently large c (depending on n), $g(x) = f(x) + ce^x$ satisfies

$$g[x_0, ..., x_n] > 0 \qquad \text{for all } x_j \text{ such that } -1 \le x_0 < \cdots < x_n \le 1.$$
 (6)

Now we should also note that

$$f \in C[-1, 1]$$
 (and thus $g \in C[-1, 1]$ also). (7)

Indeed, $|f[x, y]| \leq M_1$ for all $x \neq y$ in [-1, 1], and (7) follows immediately. Then by [BW], the derivative $g^{(n-2)}$ exists in (-1, 1), for n > 2.

Now take n = 4. By choosing c large enough, we can certainly force g''(x) > 0 on (-1, 1) $(g[x_0, x_1, x_2] \ge \frac{1}{2}$, say). Now the function $h(x) \equiv g[x, -1]$ is bounded and monotonic (since g'' > 0 on (-1, 1)) and hence $\lim_{x \to -1^+} h(x)$ exists, so that g'(-1) exists, since $g \in C[-1, 1]$. Similarly, g'(1) exists. But we also get that g'(x) = g[x, x] is bounded and monotonic on (-1, 1), and hence $\lim_{x \to -1^+} g'(x)$ and $\lim_{x \to 1^-} g'(x)$ must exist. Then g' must be in C[-1, 1], and hence f' exists on [-1, 1].

Now we just proceed inductively. For n = 5 (choosing c larger, perhaps, as we go along) we can force g'''(x) > 0 on (-1, 1). Then g'[x, -1] is bounded and monotonic (just use the Mean Value Theorem) and hence g''(-1) (and similarly g''(1)) exists with $g'' \in C[-1, 1]$. Proceeding, we see that $f^{(n)}$ exists on [-1, 1] for any given positive integer n.

Remark. It can be shown that there exists a function $f \in C^{\infty}[-1, 1]$ such that neither f nor -f satisfies the hypothesis of Theorem 2. This follows from [HR1], where an $f \in C^{\infty}[-1, 1]$ is constructed so that $\mathscr{L}(\mathscr{L}(f)) = \{\text{all polynomials}\}.$

Question. Must the f in Theorem 2 be analytic on [-1, 1]?

COROLLARY 1. If $f \in \text{TBI}$, then $f \in C^{\infty}[-1, 1]$.

Proof. Follows immediately from Theorem 2. There is also a proof of Corollary 1 that is simpler than that of Theorem 2.

Now that we know that $TBI \subseteq C^{\infty}[-1, 1]$, we can use the partial sums of the *Taylor series* to get that f is actually analytic on [-1, 1]. (Note that our bound on interpolants with distinct nodes extends easily when the nodes coalesce.)

LEMMA 1. For any $f \in TBI$,

$$\left|\frac{f^{(n)}(x)}{n!}\right| \leq \frac{2 \|f\|_{\mathrm{TBI}}}{(1+|x|)^n}.$$

Proof. Consider for any $x \in I$ the Taylor interpolant

$$s_n(x;c) = f(c) + f'(c)(x-c) + \cdots + \frac{f^{(n)}(c)}{n!} (x-c)^n.$$

Then

$$|s_n(x; c) - s_{n-1}(x; c)| \leq 2 ||f||_{\mathsf{TBI}}$$

so that

$$\frac{|f^{(n)}(c)|}{n!} |x-c|^n \leq 2 ||f||_{\mathsf{TBI}} \Rightarrow \frac{|f^{(n)}(c)|}{n!} \leq \frac{2 ||f||_{\mathsf{TBI}}}{(1+|c|)^n}.$$

THEOREM 3. Let E = union of the two discs in the complex plane $E_1 = \{z: |z-1| < 2\}$ and $E_2 = \{z: |z+1| < 2\}$. Then if $f \in \text{TBI}$, f must extend to be analytic in E.

Proof. For any $c \in [-1, 1]$,

$$f(x) - s_n(x; c) = \frac{1}{n!} \int_c^x f^{(n+1)}(t)(x-t)^n dt$$

(the Integral Form for the Remainder), and thus

$$|f(x) - s_n(x;c)| \leq \frac{1}{n!} 2 ||f||_{\text{TBI}} (n+1)! \int_c^x \frac{|(x-t)^n|}{(1+|t|)^n} dt$$

$$\leq k(n+1) \frac{(x-t)^{n+1}}{n+1} \Big|_c^x \quad \text{or} \quad k(n+1) \frac{(t-x)^{n+1}}{n+1} \Big|_c^x$$

(by Lemma 1) and thus $|f(x) - s_n(x; c)| \le k |(x - c)|^{n+1}$. Hence for x close

to c, the Taylor series converges to f(x), which implies that f is analytic on [-1, 1]. For each c, the radius of convergence r_c of the power series expansion about c is $\ge 1 + |c|$, again by Lemma 1. Thus f is analytic in $\bigcup \{N_c : c \in [-1, 1]\}$, where $N_c = \{z : |z - c| < 1 + |c|\}$. But it is easily seen that $\bigcup N_c = E$, and this completes the proof.

Remark. While we have defined TBS for *real-valued* functions, if f is complex-valued then the corresponding definition is obvious (or one can say then that $f \in \text{TBS} \Leftrightarrow \text{Re } f$ and Im f are in TBS).

LEMMA 2. For any w on ∂E or outside \overline{E} , $f(z) = 1/(w-z) \in TBI$. *Proof.* Let p be any interpolant to f at $\{x_0, ..., x_n\} \subseteq [-1, 1]$. Then

$$E(x) = f(x) - p(x) = \frac{(x - x_0) \cdots (x - x_n)}{(w - x_0) \cdots (w - x_n)(w - x)}$$

(This follows easily since p(x)(w-x) interpolates 1 at $\{x_0, ..., x_n\}$, etc.) But for any j we must have $|x-x_j| \leq |w-x_j|$ since E contains every disc in \mathbb{C} centered at x_i with radius $|x-x_i|$, $x \in [-1, 1]$.

Remark. It is of considerable interest to determine the precise boundary behavior in E of functions $f \in TBI$. For example, using Cauchy's formula, it can be shown that $H^1(E) \subseteq TBI$, where

$$H^{1}(E) = \{ \text{Hardy Space of } H^{1} \text{ functions on } E \}$$
$$= \left\{ f \text{ analytic in } E: \lim_{\Gamma \to \partial E} \int_{\Gamma} |f(x)| \ d |x| \right\}$$

exists for any collection of uniformly smooth contours Γ tending to ∂E . However, Lemma 2 shows that $H^1(E) \neq \text{TBI}$ since $1/(3-z) \notin H^1(E)$.

2. SPACE OF TOTALLY DERIVATIVE BOUNDED FUNCTIONS

We now define a Banach space B as follows:

$$f \in B \Leftrightarrow \exists M \text{ such that } \|p^{(j)}\|_{\infty, [-1, 1]} \leq M$$

for any $p \in \mathscr{L}(f)$ and any non-negative integer j. For $f \in B$,

$$\|f\|_{B} \equiv \sup_{\substack{p \in \mathscr{L}(f) \\ j = 0, 1, \dots}} \|p^{(j)}\|_{\infty, [-1, 1]}.$$

It is trivial that this defines a norm, and it also follows that B is complete under this norm. We sketch the proof of that fact now. Note that since $f \in \text{TBI}$, f is certainly $\in C^{\infty}[-1, 1]$.

By taking *n*th derivatives of Taylor interpolants of f, it is easily seen that

$$\|f^{(j)}\|_{\infty, [-1, 1]} \leq M \qquad \text{independent of } j \tag{8}$$

and

$$\sup_{j} \|f^{(j)}\|_{\infty, [-1, 1]} \leq \|f\|_{B}.$$

So if $\{f_n\}$ is Cauchy in B, $\exists f \in C^{\infty}[-1, 1]$ such that $f_n^{(j)} \to f^{(j)}$ uniformly for any j (we really do not need such convergence, though). Then we just proceed as earlier, using the fact that $D^j L(f_n)(x) \to D^j L(f)(x)$ for any $L \in \mathscr{L}(f)$ and any j.

Now it also follows from (8) that

Every
$$f$$
 in B is an entire function. (9)

We can also show

THEOREM 4. B is not an algebra.

Proof. First, for $f(x) = e^{cx}$, $|c| \le 1$, $f \in B$. This follows since for any $p \in \mathcal{L}(f)$, $p^{(j)} \in \mathcal{L}(f^{(j)})$ and hence

$$|f^{(j)}(x) - p^{(j)}(x)| = \left| (x - t_0) \cdots (x - t_{n-j}) \frac{f^{(n+1)}(\xi)}{(n-j+1)!} \right|$$
$$\leq e^{|c|} \frac{2^{(n-j+1)}}{(n-j+1)!} |c|^{n+1},$$

which clearly remains bounded, independently of n and j.

If c > 1, however, then e^{cx} clearly does not satisfy (8) and hence is not in *B*.

Question 1. Is B a familiar space of entire functions? In particular, is $B = \{\text{entire functions of type } \leq 1\}$, with the B norm equivalent to $\sup_{j} || f^{(j)} ||_{\infty, I}$?

Question 2. We can define a similar space A by the requirement $||p||_{\infty,I} \leq M$, where p is any Lagrange interpolant to any derivative of f. By the Mean Value Theorem, $A \subseteq B$. Is A = B (setwise), with the norms equivalent? (The norm on A is obvious.)

3. TOTALLY POSITIVE FUNCTIONS ON I AND RELATED TOPICS

Our first result follows directly from Theorem 2.

THEOREM 5. If $f \in \text{TPI}$, then $f \in C^{\infty}[-1, 1]$.

THEOREM 6. $f(x) = 1/(b-x) \in \text{TPI} \Leftrightarrow b \ge 3$.

Proof. Clearly we must have b > 1. As noted earlier,

$$E(x) = f(x) - p(x) = \frac{(x - x_0) \cdots (x - x_n)}{(b - x_0) \cdots (b - x_n)(b - x)},$$

where $p = L(f; x_0, ..., x_n)$. Also p is positive on [-1, 1],

$$\Leftrightarrow E(x) < f(x) \text{ on } [-1, 1] \Leftrightarrow \frac{(x - x_0) \cdots (x - x_n)}{(b - x_0) \cdots (b - x_n)} < 1 \text{ on } [-1, 1].$$

But if 1 < b < 3 and *n* is odd then choose $x_0 = \cdots = x_n = 1$ and $x = -1 \Rightarrow E(-1) > f(-1)$, and a small perturbation gives an interpolant at distinct points which is negative at -1.

If b > 3 the result is trivial. If b = 3, then when $x_0, ..., x_n$ are distinct $(x - x_0) \cdots (x - x_n) < (b - x_0) \cdots (b - x_n)$.

It was noted in the Introduction that if $f \in \text{TBI}$, then $f + M \in \text{TPI}$ for large enough M. It is unclear, however, what the exact connection is. It is plausible that the answer to the following question is yes.

Question. Is $TPI \subseteq TBI$?

We can prove a result like this if we assume that *all* the derivatives are totally positive. We find it convenient for now to work on [0, 1] = J.

THEOREM 7. Suppose $f \in C^{\infty}[0, 1]$ and $f^{(j)} \in \text{TPJ}$ for all j. Then $f^{(j)} \in \text{TBJ}, \forall j$.

Proof. Clearly we must have $f^{(j)} > 0$ on $J, \forall j$. Now if $p \in \mathcal{L}(f^{(j)})$, then

$$E(1) \equiv f^{(j)}(1) - p(1) = (1 - x_0) \cdots (1 - x_n) f^{(n+j+1)}(\xi) / (n+1)!$$

$$\geq 0 \Rightarrow p(1) \leq f^{(j)}(1).$$

Also $p(0) \ge 0$. Since p is monotone on [0, 1] (because p' > 0 since $p' \in \mathscr{L}(f^{(j+1)})$, we must have $||p||_{\infty} = p(1) \le f^{(j)}(1)$ for all interpolants p to $f^{(j)}$. Hence $f^{(j)} \in \mathbf{TBJ}$.

Remark. There are functions f such that $f^{(j)} \in \text{TPJ}$, $\forall j$. For example, if g belongs to the space A mentioned earlier (uniform bound on interpolants

to any derivative, modified for [0, 1]), then $g + Me^x$ will work for large M, since it can easily be shown that e^x (and hence all its derivatives) is in TPJ, with a *positive lower bound* on all the interpolants to e^x . However, if $f^{(j)} \in \text{TBJ } \forall j$, we cannot just take $f + Me^x$ to get $f^{(j)} \in \text{TPJ } \forall j$.

Interpolants on Unbounded Intervals

THEOREM 8. Suppose f is totally positive on $[0, \infty)$. Then f(x) = ax + b for some constants a and b.

First, we state the following lemma, whose simple proof we leave to the reader.

LEMMA 3. Suppose all linear interpolants to f are positive on $[0, \infty)$, where the nodes are also from $[0, \infty)$. Then f(x)/x must be decreasing on $(0, \infty)$.

Proof of Theorem 8. By Lemma 3, f(x) = O(x) as $x \to \infty$. Now suppose f is not linear, and choose points $\{x_0, x_1, x_2\} \subseteq [0, \infty)$ such that $f[x_0, x_1, x_2] \neq 0$. Let $p(x) = L(f; x_0, x_1, x_2)$, so that p has degree = 2 since its leading coefficient is $f[x_0, x_1, x_2]$. Let

$$E(x) = f(x) - p(x) = (x - x_0)(x - x_1)(x - x_2) f[x, x_0, x_1, x_2]$$

Now since all *third*-degree interpolants to f are positive on $[0, \infty)$, we must have $f[x_3, x_0, x_1, x_2] \ge 0$ for all points $0 \le x_0 < x_1 < x_2 < x_3 < \infty$. Hence $E(x) \ge 0$ for all $x \ge x_2$. But $f(x) - p(x) \to -\infty$ as $x \to \infty$ since f(x) = O(x) and p has degree = 2. This contradiction implies that f must be linear.

Remarks. (i) In proving Theorem 8 we really only used the fact that all the interpolants of degree 1, 2, and 3 are positive on $[0, \infty)$.

(ii) A necessary condition for f to belong to TPJ is that f(x)/x be decreasing on (0, 1). Hence $f(x) = (x + \varepsilon)^2 \notin \text{TPJ}$ for small $\varepsilon > 0$. But $f(x) = x + \varepsilon$ is in TPJ. Hence TPJ is *not* an algebra!

We now prove a result similar to Theorem 8 for interpolants on the real line R, where we assume the degree is even, of course.

THEOREM 9. Suppose that all interpolants of even degree to f with nodes in R are positive on R. Then $f(x) = ax^2 + bx + c$ for some a, b, c.

Proof. It suffices to assume that f is even on R. (If $f \in TPR$, then

$$g(x) = \frac{f(x) + f(-x)}{2} \in \text{TPR}.$$

We will have that g(x) is quadratic. Let h(x) = (f(x) - f(-x))/2 be the odd part of f. Since $f'''(x) \ge 0$ for all $x \in \mathbb{R}$, we have $h'''(x) \ge 0$ for all $x \in \mathbb{R}$, and thus h is at worst a cubic. But h cannot contain an x^3 term since then f would, yet f is non-negative on \mathbb{R} . Hence f must also be quadratic.)

First we claim

$$f(x) = O(x^2) \qquad \text{as } x \to \infty. \tag{10}$$

To prove (10), consider $p(x) = L(f: -x_1, x_1, x_2)$ with $0 < x_1 < x_2$ so that

$$p(x) = f(-x_1) + f[-x_1, x_1](x + x_1) + f[-x_1, x_1, x_2](x^2 - x_1^2)$$

= f(x_1) + f[-x_1, x_1, x_2](x^2 - x_1^2),

since f is even. Then

$$p(0) = f(x_1) - x_1^2 f[-x_1, x_1, x_2] > 0$$

(again f even $\Rightarrow f[-x_1, x_1, x_2] = f[x_2, x_1]/(x_1 + x_2))$

$$\Rightarrow f(x_1) \ge \frac{x_1^2}{x_2 + x_1} f[x_2, x_1],$$

and hence $f(x_1)/x_1^2 \ge f(x_2)/x_2^2$ so that $f(x)/x^2$ is decreasing on $(0, \infty)$, and (10) follows immediately.

It is clear that all the even-order divided differences of f must be nonnegative and hence $f \in C^{\infty}(R)$ by [BW] as earlier. (To apply the result in [BW], f must be continuous, but convex functions on R are continuous on R.)

Since f is even, $f^{(n)}(x)$ is ≥ 0 for $x \ge 0$ and ≤ 0 for $x \le 0$, whenever n is odd, and in particular when n = 3. Now assume f is not quadratic. Then we can choose points $\{x_0, x_1, x_2, x_3\}$ in $(0, \infty)$ such that $f[x_0, ..., x_3] \ne 0$. Let $p(x) = L(f; x_0, ..., x_3) \Rightarrow \deg p = 3 \Rightarrow E(x) = f(x) - p(x) \to -\infty$ as $x \to \infty$ by (10). But $E(x) = (x - x_0) \cdots (x - x_3) f^{(4)}(\xi)/4!$, where $\xi \ge 0$, so that $E(x) \ge 0$ for x large—a contradiction.

Remark. It can be seen that we only used the positivity of the quadratic and fourth-degree interpolants. (We need the latter to force $f^{(4)} > 0$ so that $\Rightarrow f^{(3)}$ is increasing on $[0, \infty)$, etc.) What if we just consider interpolants of degree 2?

It is true that there are non-quadratics f such that every second-order *Taylor* interpolant is positive on R (by looking at the discriminant of $f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2/2$, we get the condition $(f')^2 < 2ff''$ on R). Thus $f(x) = e^x$ is such a function. However, it follows easily that not every quadratic interpolant to e^x is positive on R, since e^x dominates all quadratics at $+\infty$.

TOTALLY POSITIVE AND BOUNDED FUNCTIONS

4. OPEN QUESTIONS AND FUTURE RESEARCH

In addition to some of the questions already listed in this paper, there are many others that come to mind. We list just a few. A space closely related to TBI is TCI, the space of totally convergent functions on I. $f \in \text{TCI}$ if any sequence $\{p_n\} \subseteq \mathcal{L}(f)$ of polynomials of increasing degree converges to f uniformly on I. It can be shown that

 $TCI = \{closure of the polynomials in the TBI norm\}.$ (12)

(For related work on TBD and TCD, D the unit disc, see [HR2]. The flavor of that paper is generally different, however.)

Problem 1. Is $TCI \approx c_0$ and $TBI \approx l^{\infty}$, where \approx denotes isometric isomorphism?

Problem 2. Is $(TCI)^{**} = TBI$?

Problem 3. We have seen that

$$f \in \text{TBI} \Rightarrow \frac{|f^{(n)}(c)|}{n!} \leq \frac{K}{(1+|c|)^n} \quad \text{for} \quad c \in I.$$

Is this condition *sufficient*?

Problem 4. Is the above condition sufficient for the partial sums of the *Taylor series* to be uniformly bounded (called Taylor bounded)? (Using the Integral Form of the Remainder, this does not seem easy and perhaps involves the solution of some extremal problem.)

Closely related to Problem 4 is:

Problem 5. Does Taylor bounded \Rightarrow totally bounded?

Problem 6. Does Taylor positive \Rightarrow totally positive?

Problem 7. Is TBI non-separable? (See [HR2] for a related result, if I is replaced by D, the unit disc.)

A whole class of problems arises as follows:

Project 1. Analyze the questions in this paper for other norms—such as $L^{p}[-1, 1]$, BMO[-1, 1], etc.

Project 2. Choose the interpolating points from one set S_1 and the sup norm on another set S_2 , and then proceed.

Problem 8. Analyze all of the above where the interpolating points are equi-spaced on [-1, 1]. What does the corresponding Banach space look like?

Other Notions

Problem 9. What properties of $\mathscr{L}(f)$ imply that f is continuous? (It is true that $f \in C[-1, 1] \Leftrightarrow$ some sequence from $\mathscr{L}(f)$ converges uniformly to f on I. But this doesn't really involve just the *intrinsic properties of* $\mathscr{L}(f)$ itself, without any reference to f.)

Problem 10. Suppose every interpolant to f has all its zeroes in I or all real zeroes. What can be said about f? (For related notions on domains in the plane, see [HR3].)

Problem 11. What are the extreme points of the cone of totally non-negative functions on [-1, 1]?

REFERENCES

- [BW] R. P. BOAS, JR., AND D. V. WIDDER, Functions with positive differences, *Duke Math.* J. 7 (1940), 496–503.
- [BR] J. BRIGGS AND L. A. RUBEL, On interpolation by non-negative polynomials, J. Approx. Theory 30 (1980), 160-168.
- [H] A. L. HORWITZ, A constructive approach to non-negative polynomial interpolation, Approx. Theory Appl. 3 (1987), 25-36.
- [HR1] A. L. HORWITZ AND L. A. RUBEL, Two theorems on inverse interpolation, *Rocky Mountain Math. Journal*, to appear.
- [HR2] A. L. HORWITZ AND L. A. RUBEL, The space of totally bounded analytic functions, Proc. Edinburgh Math. Society 30 (1987), 229-246.
- [HR3] A. L. HORWITZ AND L. A. RUBEL, Restrictions on the zeroes of Lagrange interpolants to analytic functions, *Complex Variables* 6 (1986), 149–157.
- [IK] E. ISAACSON AND H. B. KELLER, "Analysis of Numerical Methods," Wiley, New York, 1966.